If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81+1600=c^2
We move all terms to the left:
81+1600-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+1681=0
a = -1; b = 0; c = +1681;
Δ = b2-4ac
Δ = 02-4·(-1)·1681
Δ = 6724
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6724}=82$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-82}{2*-1}=\frac{-82}{-2} =+41 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+82}{2*-1}=\frac{82}{-2} =-41 $
| 20(v+11)=20 | | |5-4r|=17 | | 12d084=0 | | 3x+x-14+22=68 | | -51=3(u-99) | | 8(p+3)=96 | | 6(f+10)=78 | | w+47=10 | | x3+1=715 | | c+30/6=9 | | 2b+33=77 | | 53=4d+17 | | 16=8(w+47) | | 65=5(s+4) | | 5x=180⁰-125⁰ | | 8x-56=384 | | x+(−2)=−5 | | y-91/6=1 | | 5n−2+9n=78−6n | | 7(8a+8)=896 | | 8a+53=101 | | 4=t-3 | | 2^x^2=7^6-x | | 4=t3− 3 | | 37=-2r-19 | | 5x(x)+20=100 | | 16-14=w-6w+7w | | -37=8f+-139 | | (2x-24)(5x-27)=180 | | 6v+6=2v+2406 | | -8w+9=-15 | | 9z+3=84 |